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A (jeneral Method for Dynamic Analysis of Structures

1. Definition of the Term "Element_'_'

An element is defined as any structural unit whose degrees of freedom (DOFS) can be categorized

as either interface DOFS or non-interface (internal) DOFS.

Interface DOFS are those DOFS through which the element is connected to one or more neigh-

boring elements. Non-interface DOFS are internal to the element and do not directly couple Io

neighboring elements.

The term "element" then, has a rather broad meaning. An element could be a fundamental

structural unit such as a rod, a beam, a plate, etc. or it could be an entire structural component.

Furthermore, the parameters of the element could be distributed or lumped. Figure l schematically

illustrates the element concept.

Any structural system can now be thought of as a composite of n such elements. The choice of

elements is totally arbitrary and is a matter of user convenience. In particular, the user does not

have to worry about the "size" of the element as is the case for example when using a standard

finite element approach. This means that in general n is relatively small and little bookkeeping is

necessary.

Spatial periodicity of structures can be taken into account in a natural manner. These important

advantages will be further clarified in the next few sections.

II. Modeling of an Element

Each element will be modeled using a set of assumed modes. In particular, a combination of

interface constraint modes (ICM) and a set of interface restrained normal modes (IRNM) can be

employed. Note that other types of assumed modes can be selected and should be investigated. The

above choice is motivated by the Craig/Bampton approach to component modes synthesis and has

several important advantages.

t. Interface Constraint Modes (ICM)

Let us assume the element has4 interface DOFS Xxj(l-_2,.._:O.The ICM corresponding to I)Ol",':xi
is defined as the static_ deformation pattern of the element for x2-4 =/ and X r i..- 0 (for all i_j }. "
Note that many "shape functions" used in the finite element metfiod are actually 1(;,%1.

2. Interface Restrained Normal Modes (IRNM)

[RNM are the regular mass normalized mode shapes for the element with fixed interface I)OFS.

3. D_isp_l!ac_e_me_nto f a n_E le me (_tt

The displacement vector of a djs'c_re_te element can be partitioned as:

The non-interface displacement can be written as

% ÷
where the lirst term_.x_ represents a _lal, ic deformation due
term _ is best described as the dilference

The displacement vector _N is now written a.s a linear combination of the IRNM

t.o the interface disl,laceme.l.s.The

(a)

(.l)
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Figure I: A Schematic Representation of the Element Concept.

/ .3

Ftgure'Z: Schematic Representation of
Three E1ements
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where _N i,sa ,set,of modal coordinates.
The displacement vector X can uow be writt,cn a.'i

with

,[i]
2:
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(G)

The columns of matrix t clearly represent the ICM of the element. The actual general form of the

matrixS"Nz will be given shortly.

The elements of the vectors _: and _ will be the generalized coordinates used to model a
structural element. Equation (5) is also valid for distributed parameter elements.

Equation (5) indicates why the elements can be chosen with a large degree of freedom. If the

matrices "_ and 2"_ can be determined with enough accuracy then a legitimate element is found
regardless of its size. For example entire beams, rods and plates can be considered as one element.

Even large components could be considered as single elements as long as Eq. (5) can be adequately

written. As a consequence, a considerable amount of bookkeeping can be avoided, thereby reducing

the cost of the analysis.

In the next section we will introduce the element equations of motio,.

lll. The Element Equations of Motion

From here on we will work with discrete systems because relationships can be shown more

explicitly. It should be kept in mind however, that all results are equally valid for distributed-

parameter systems.

The most general form of the element displacement vector X is:

)
,-4 -" number of distinct

interfaces of the element

For Example:

,,4_3 for element e

(7)
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The ,,,a_ matrix ha.qa similar for,,, a,,otJaFraP/a0&,_t_ to vector _ i,, I':,1. (9) i,:

with partitioning corresponding to F_q. (9).

The rorm of Eq. (10) suggests that

and

Oir t

with

.. KLKN:/ ,
r: o ...0, olf_ :]

(if)

(12)

(l:i)

(14)

(i5)

where _/are [RNM and the partitions in £q. (14) correspond to Eq. (13).

Using Eqs. (11), (12) and (14) the mass and stilfne_ matrices for an element corresponding to

(16)

(17)

X
coordinates .i,_/v are:

LM_ z J _'_ L_.J

where
"r

I_,, = _'_ + _rNj_
lind where we made ilse or the fact that

/¢'¢'H + 'S'_'N_ = 0

(i.)

(io)

(zo)

(:_i)

KIN i_/ - _.i III N M .rti...,r..,lii.y _'-.,lil i..._ (':':}

Th(" iillliroiu'h r.ll.w(,d to ,io(k,I the eli, llWlit r(,v(,al._ a illli(lilr li(,_liectivl , (ill it ._l,riiiii._ ._h,irll'(llli-

inl of the ,talidar(| |hilt(: (.,l(,lllent t(.,chliiqu(-_l when ii,_l_! t() COli.%rll(_t i:h, llil_lit lilli._ lllairi('l_. Iliih_.ll.

it ill ilear that a standard Iinite element rnasi matrix (consistent) repre_,llt, a (l,yan r(_liictioii hi

which the iliternal ill,gr(l.-i ol" I'ril,_loln (lion-hlll, rllif(,) llrl! i, Ihlihiah_l, i.(:. all _._I/ ¢lNirililiiih._ ;ir('
qlected. As will be ._een later, Illth in appro/imation i, valid olily whell tile eli, lllentit arl, "._liiiill"

eiltilllh _o that indeed the coordinates _ haw liO ellect on the respont of the structure.
In the nixt .('ciion we will ,lb.:urn tli6 t'Ol'lllati¢ II Of liar ._y.tem equation_.
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I. (;Ln!LdSi,g_9[_Two I.;h.i,j_!,:!.s

In this section we will demonstrate how elements are assembled into global coniponents. As an

example, consider the three elements in Figure g, EqlmUons.(16-20) represent ttle general fi_r.i of
the element equations: '['he displacement vector for element t. can be written as

in general, the vector ..x_ represents a set of local displacement coordinates. In order to enforce

displacement compatibility between the element interfaces it is necessary to transform x i into a _t

of global coordinates ._._,

(21)

• where Qx m a geometric transformation matrix. Note that no transformation is necessary for

_//v' because element s only connect through interfaces. Using equations of the type Eq. (24) we can
r_Write Eqs. (16-20) in the following form

#: F ,f ",,I j'--.:

[yo]
_L ! f

"i "i " arewhereM#p/ulelanu/Cu i easily found.

The first step in the assembly process is to connect element I to elevrient 2 by requiring thal

for all times (27)

of I _l r h,

,i<+,0,,0 a. #
_Sl 0 _x

(_)
_.,,_ ,_. _ _'_T Jk2 *,_ O

-D "l, x ,'_ I; o _i" /_Ajj

The uncoupJ__ equations of motion for the I-2 component <:an he written as follows
I I

_,, Mi,

0

where i|_e danlpilill avid flirting tl, rivis are omitted Slilf(;

problem. Note Ilia[ for eieillellt ",_we have I.wo ir,terfac(.._l and w(, (lelloled

we are (llll.v ilii.erl'sted ill the i,ig,'liliihlt,

(:m)

Taking into al'coulit E(I. (27) we can write the roullh,d equation.,i of motion for COliillOlielit I-7 ii.,i
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•.. ,. olli tl ooH' 0 _" u (::o)

n4_S O 0 O

At thispoint,element3 shouldhe connectedto the I-2component. Beforedoing this,_quation

(30)willbe manipulated intoa form identicaltoEquations(16-17).This isan importantfeatureof

the presented technique. [ndeed, it will allow usto consider the 1-2 component as a standard element
as defined in Section [. [n other words, the resulting equations will represent the dynamics of ¢_lement
1-2. In addition, the equations will be in a form suitable to apply an escalator type eigensolver to be
discussed later.

2. Transformation of the Interface Displacement Vector

The first step in reducing the 1-2 component into a single element is to introduce the following
transformation

:_'. Y_ X _ + ._'
".Z" _'.T-2 _'.Z" (3t)

with

I r

(._)

This transformation is entirely equivalent to Eq. (2). The term "_r4 _¢-_represents that part

of _r_ which is due to the displacement of the interface [2. The term _L_r is the displacement of.l[
with r_spect to the interface 12 as seen by an absolute observer. Note that the matri._Km_]is never
singular because it represents the stiffness matrix of a rigid body restrained system.

The displacement vector _; can be written as a linear combination of IRNM as follows

where the eigenvalue problem solved is

-,,÷-,, . i _,;+k:J _'
The following transformation

'Z_,JLo o o l._;
can now be subsl.ituted into Eq. (30). riehling _. ._"_..,. -,_ _,; !_, "_,, 0 0 0_ _..

t

:Z 0

where _#l/_l/_t ... *,, _'_,,_4 and/_lt can t., easily found.

(:_._)

(::._)

(:m)
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eigenvalue problem

3. Thc_IRNM Eigenvalueproldem
l +The .,+t_:o.d step in reducing l';q. (30) to a form idenlical t.o l,<is. (16-17) i.'+the mdutio, of oh,'

++"':+7[+++1
L_4_. 0 .Z" J 0 0 _

(37)

Using the transformation

in Eq. (36) yields

-)I"" °+ +. -_0

(3s)

(39)

with

(i0)

Equation (39) is now equivalent in form to Eqs. (16-L7). [t essentially represents the equations of
motion for the I-2 component viewed as one single element. If along the way no modes are truncated

then Eq. (39) invotves no unusual appro×imations. In particular, for the continuous equivah, nt. lhe
equations corresponding to Eq. (3g) are still +exact".

The eigenvalue problem (37) has a very special form and an optimu,| solution will be di.,_'ussed
in Section V.

An important aspect of the present technique is the truncation of the mode set_'accordiisg to a
preset frequency. This preset frequency must reflect the+frequency content i, an eh, ment necessary oo

obtain the desired fidelity in the overall system model. How the +element" cut-off frequency COmlmres
to the %ystem" cut-off frequency is still a matter of research or _exl)('rience'.

Once the appropriate truncation is perfornted, a third element can he added through inl.t,rl'are
12. Note that the ms,her of degrees of freedom is already reduce(I. The eigenvalue l)roblem (:|7) is
small and can be solved very elliciently as will be shown.

It is also important to note that because of the transformation (31) we do .or loose any iu'c.rm'y
in the rigid body and static propertit.,s of the system when modes are. truncated.

I. Co.pli,lg of I':lemem, I-2 a.d I':h'me.t 3.

"['11,+ il('Xt step is to ('O, ld,, i,h,lnelll. "l I.o Pl('lfl('llt I-2. "l'hi,_ prcwi.,ssis very similar I. Ih,, ,,l,.
already dt.'scrii)e(I. I"rom I.;qs. (25-3;) _,t, can ohtain for (__ .J

++__[+,, }
_ (111

The iinCollpk_l equations ill Inotion for the 12-;I colnplinrnt can he writlen ;m
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s'! ,.,_,,
L " L° Io 'lL< l

where we used Eqs. (39) and (.IL). Note that the interface 12 of element 3 is part of the model if no

other elements are to be connected. However, if other elements are to be connected, this interface

must be made explicit.

We now must impose the compatibility condition

"v,r_. "-._'1

Because this is the last element, no further transformations of the interface displacement vector is

necessary. Using Eq. (34) we can write

(-13)

which represent the cou_.Q_J_ledequations for elements I-2 and 3.

Next, we can solve the small eigenvalue problem.

so that

(4r,)

{._o}

Note that no "bar" is nece._ary over the above quantities, because if the ._ystem is free. lhe ri_i,l

body prol perties will be incorporated in Eqs. (,15) and (,16).

Incorporating Eq. (.16) into Eq. (-I,I) yields

L'_,5 0 x o o _"JL,].._
T',_"

with

Finally, note the simple G)rm of this system of equation (47). First, generally truncation will re, h. ,,

the size ._ignilicantly. In addition, the _l)(_ilic form will allow for al)l)lical.io, of the escalal-r all_oril hr.

a.,i (li_us.,_,d in Section V. This eigenvalue .,mlver will yiehl a ._,t of ._y.tem l'reqm,llcies _,_n,l _>_|,,vvl

modest" with a minimum of effort and cost.

Ik:fore w_: discu._._ the special eigenwdue _Iver, remarks are in order:

(I) So far, we described how the elements are coupled together. It is a matter of rel..aling II.,

same procedure for each added ele.lent. Each time truncation L,_used oli the eleme.t level a_

well am on the level of the current system. A _ries of relatively ._mall eigenvalue pr.hh.ms is
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solved using a very eilicient eigenvalue probh:m solver. The enl.irc system is grad.ally h.ilt

lip, keeping only the necessary frequency fidelity at each stage. Sever;d i.llere_t, ing qll_'_lion_

arise, for example: (a) what is the ideal trade-off between eh, ment frequency truncation and

current system frequency truncation, and how do both relate to the overall desired fidelity? (b)
Which is the optimum way of solving the successive eigenvalue problems? Should we wait ||ntil

several elements are collected before a current system eigenvalue problem is solved'? This is an

important question since it affects storage, cost and accuracy.

The manner in which the elements are coupled together makes this technique ideally suited to

handle spatial periodicity. Indeed, Eq. (39) shows that each current system can be considered a.s

an "element". If care is taken, it is possible to use the same element over again, without adding

significantly to the cost. For example, a periodic truss can be started with one element which

is truncated according to a desired frequency. This model can now be doubled and truncated

again. This truncated 2-element model can now be doubled again, to yieh| a I-element truss,
etc.

V. The Eigenvalue Problem Solver

In this section we will describe an eigenvalue problem solution technique which is particularly
suited for our purposes.

First, let us consider the following special eigenvalue problem:

-, 0o-/r o"'"  " If ol o ---
A _ 0 , '

"" I I

'
This pro__a'la hash a '_ J L¢_:_etJ b 0 _a

lem diagonal stiffness matrix and a unit mass matrix except for the first row and

column. The /4/i values are such that the mass matrix is positive definite.

The characteristic equation of this problem can be written as follows

Z- , = o
£.., _- kL" (._0)

This assumes implicitly that _._M-(l'or,_,jand L_..-_..;,_) and also that /¢o_,o. II,/¢t.-&ithen it can I,e

shown that there is a rootA=&i J. It can also be shown that all roots satisfy It,., ineq||ality

Ao ,: I¢o-"/_, _ ,,_t_'le._,_Az ,:..._,__z_"/_,_.,._A__I,:Ic_.An (:,l)

In other words, we have isolated the eigenvalues of the system re.presented by Eq. (I!)). Nole th:Lt

property (_'1) again shows that l,or_-.,_- _.becomes a root of the system. Property _/,) MIow._ i,s to use

for exarnple the Newton-I{aphson technique I o lind the actual eige||val||es.A i . Thi._ il.era, I ion sch|,|,e
converges quadratically provided a good initial value is found. Without going into detail, at Ihi.,_

point we can say that property (_"1]allows for a very accurate initial value for each of the ¢,igenvah|es

• Therefore, convergence is extremely l,ast, el.ten after two or three iterations.

Once the eigenvalues are determined, it. is co|nputationally a trivial rnatler to .blain Ill,, c-r-

responding eigenvectors. Also, multiph." roots are no problern. This algorithm was progra,n.|ed Iml

not yet optimized. New, rtheh,ss, or_ a VAX/TgO, it requires only IO _|,('omls o1"(:l't' lime I. _-I_e

a probh,m with n .150, which is a size far beyond our needs. A._ part of the presented dy||a..i_"

analysis tecimique this eigenvalue problem must be solved for each interface def.

V[. S u n.tlary__a]ld_ _Cpnc 13_=siop_

The presented research deals with the development of a dynamic analysis method fi_r st rm'!,ral

systems. The modeling approach is essentially a finite element method in the sense that the sl r.cl ure
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in divided into n "elements". An "element" is defined its any structural unit whose dols. can be

categorized as either interface or n.,-i.terfitce dol'._. The h,rm "eh, menl" the,, has a rather hn_ad

meaning. An element could be a fundamental unit such as a rod, a beam, a plate etc. or it could be

an entire structural component. Furthermore, the parameters fi)r the element could be distrib,t,ed or

lumped. The choice of elements is totally arbitrary and is a matter of user convenience. In particular,

issues of accuracy and convergence do not enter on the level of element choice as is the case in a

standard finite element method. This means for example that bookkeeping is reduced to a minimum.

F.ach element will be modeled using a set o1"interface constraint modes (ICM) combined with a

set of interface restrained normal modes (IRNM). If the [CM and [RNM can be found with enough

accuracy, then a legitimate "element" is defined. For example, entire beams, rods and plates can be

considered as one element. Entire components can be made into one element in an off-line manner.

Moreover, the entire system can be modeled as if it was represented by partial differential equations.

Note that standard finite element techniques in general only use [CM (: shape functions) which

leads to very interesting and useful insights into important shortcomings of these techniques. In

particular, the problem of an accurate mass distribution is addressed by this new approach.

The element assembly process is essentially the same as in the standard finite element method.

However, each combination of elements is automatically converted into a single element. This pro-
cedure is based on static condensation without loss of accuracy. This feature is very important and

allows for each structural unit to be interpreted as an =element". It also allows for the stiffness

matrix to remain diagonal.

The next step is the solution of the system eigenvalue problem. The procedure calls for the

sequential solution of a number of small eigenvalue problems based on a truncation principle I'or

IRNM. In addition, the form of these eigenvalue problems is very simple such that an escalator type

of eigenvalue problem solver can be used which is extremely cost-effective anti fast. The respon,_.
loads, etc. calculations are rather standard, but also benefit from the approach in terms of accuracy

and cost-effectiveness. The groundwork for this technique is in place and is currently supported by

the AFWL/ARB[[ Kirtland AFB, NM. Some of the advantages of the new technique are: (1) "['he

problem of Order Reduction is believed to be solved. The technique implicitly reduces the system
order. Whenever an element is added only information necessary to obtain a prescribed fidelity in the

system model is retained. (2) Very accurate. [n fact, if desired, "exact" solutions in the distributed

parameter sense can be obtained for any structure. (3) Fast and cost-elt'ective. This is due Io lhe
small number of elements: the solution of a series of small eigenvalue problertls instead of one large

problem; the special nature of these small eigenvalue problems combined with the cost-effectiveness

of the escalator eigenvalue problem solver. (.I) Applicable in general. In particular, extremely large

structures do not pose a problem. Once a model is agreed upon, any number of modes and frequencies

with any degree o[ accuracy can be computed.. (5) It is anticipated that Micro Computers can be used

to solve even the largest of problen_,_. This is due to the small bookkeeping elfort and the sequential

nature of the solution. (6) Spatial periodicity can be taken int, o account in a nal.,ral manner. (T)

it is anticipated that this method will he useful in areas like control optimizatio,, identilicati_*n

and possibly non-linear phenomena. The fea,_ibility of this technique as well as several of the abow,

advantages have been demonstrated with several examples.
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